پیش بینی عملکرد گندم دیم با استفاده از رگرسیون چند متغیره و شبکه عصبی مصنوعی (مطالعه موردی: استان گلستان )
پایان نامه
- وزارت علوم، تحقیقات و فناوری - دانشگاه علوم کشاورزی و منابع طبیعی ساری - دانشکده علوم کشاورزی
- نویسنده عبدالجبار ملاعرازی
- استاد راهنما محمود رائینی خلیل قربانی
- تعداد صفحات: ۱۵ صفحه ی اول
- سال انتشار 1392
چکیده
پیش بینی به موقع و دقیق پیش از برداشت محصولات زراعی هم¬چون گندم، می تواند در برنامه ریزی از جمله در قیمت گذاری، صادرات، واردات، انبارداری و تامین به موقع محصولات زراعی مفید باشد. از آنجائی¬که عملکرد گندم دیم علاوه بر خصوصیات ژنتیکی رقم، تابع رویدادهای اقلیمی می باشد لذا هدف از این تحقیق، تعیین مدلی است تا بتواند عملکرد گندم دیم را پیش از برداشت با استفاده از پارامترهای اقلیمی پیش بینی کند. در این بررسی برای تهیه مدل¬های پیش بینی عملکرد گندم از روش رگرسیونی چند متغیره خطی و شبکه عصبی مصنوعی استفاده شد که تحلیل¬های شبکه عصبی مصنوعی و رگرسیون چند متغیره خطی به ترتیب با نرم افزارهای12spss clementine و 17 spss انجام شد. نتایج بررسی نشان می¬دهد که در روش رگرسیونی در کلیه شهر¬های مورد بررسی، اضافه شدن تعداد پارامترها با ضریب هبستگی به مدل باعث افزایش دقت مدل می شود. در این تحقیق بهترین مدل رگرسیونی درکلاله با ده پارامتر بدست آمد که این مدل در سطح 1% معنی دار و ریشه میانگین مربعات خطا آن برابر 14 کیلوگرم در هکتار می¬باشد و ضریب تعیین مدل برابر یک است. روش های مختلف شبکه عصبی در پیش بینی عملکرد گندم دیم در مقایسه با روش¬های رگرسیونی از ریشه میانگین مربعات خطا بسیار کوچکی برخوردار و از بین روش¬های مورد بررسی شبکه عصبی، روش rbfn از ریشه میانگین مربعات خطا کمتری برخوردار است و از بین پارامترهای هواشناسی مورد بررسی، مجموع تعداد روزهای بارندگی دوره¬ی رشد، مجموع میزان بارندگی دوره¬ی رشد، بارندگی فروردین، شاخص خشکسالی موثر فروردین و میانگین بیشینه دمای هوا فروردین به ترتیب از مهم ترین عناصر اقلیمی تاثیرگذار در عملکرد گندم در روش شبکه عصبی در گلستان می¬باشند.
منابع مشابه
مقایسه روش های نروفازی، شبکه عصبی و رگرسیون چند متغیره در پیش بینی برخی خصوصیات خاک (مطالعه موردی: استان گلستان)
با توجه به مشکلات اندازه گیری مستقیم برخی از ویژگی های خاک، در سال های اخیر از روش های غیر مستقیم برای برآورد این خصوصیات استفاده می شود. بدین منظور، در این پژوهش140 نمونه جمع آوری شده از منطقه گرگان مورد آزمایش قرار گرفته و فراوانی نسبی ذرات، کربن آلی، درصد رطوبت اشباع و آهک به عنوان ویژگی های زودیافت و نقطه پژمردگی، ظرفیت زراعی، ظرفیت تبادل کاتیونی و وزن مخصوص ظاهری به عنوان ویژگی های دیریافت...
متن کاملپیش بینی سیل با استفاده از شبکه عصبی مصنوعی و رگرسیون چندمتغیره غیرخطی (مطالعه موردی: طالقان)
با توجه به کمبود ایستگاه های اندازه گیری در کشور، لزوم استفاده از مدل های تجربی برآورد دبی حداکثر لحظه ای بسیار ضروری است. در این پژوهش از دو مدل شبکه عصبی و رگرسیون چندمتغیره غیرخطی برای پیش بینی دبی اوج در حوزة آبخیز طالقان استفاده گردید. با استفاده از آمار دبی های متوسط حداکثر روزانه و بارش های متناظر، یک روز قبل و پنج روز قبل و مجموع بارندگی پنج روزه و همچنین دمای میانگین ماهانه در واحدهای ...
متن کاملمقایسه روشهای شبکه عصبی مصنوعی و رگرسیون چند متغیره در پهنهبندی خطر زمینلغزش، مطالعه موردی: حوضه ونک، استان اصفهان
زمینلغزشها از مهمترین خطرات طبیعی هستند که نه تنها زندگی انسان را به خطر میاندازند، بلکه باعث ایجاد بار اقتصادی برای جامعه میشوند. با توجه به اهمیت تشخیص مناسبترین روش برآورد صحیح خطر زمینلغزش، در این پژوهش میزان کارایی دو روش شبکه عصبی مصنوعی و رگرسیون چندمتغیره مقایسه شد. بدین منظور ابتدا با استفاده از عکسهای هوایی، تصاویر ماهوارهای، نقشههای زمینشناسی و بررسیهای میدانی نقش...
متن کاملمقایسه روشهای نروفازی، شبکه عصبی و رگرسیون چند متغیره در پیشبینی برخی خصوصیات خاک (مطالعه موردی: استان گلستان)
با توجه به مشکلات اندازهگیری مستقیم برخی از ویژگیهای خاک، در سالهای اخیر از روشهای غیر مستقیم برای برآورد این خصوصیات استفاده میشود. بدین منظور، در این پژوهش140 نمونه جمع آوری شده از منطقه گرگان مورد آزمایش قرار گرفته و فراوانی نسبی ذرات، کربن آلی، درصد رطوبت اشباع و آهک به عنوان ویژگیهای زودیافت و نقطه پژمردگی، ظرفیت زراعی، ظرفیت تبادل کاتیونی و وزن مخصوص ظاهری به عنوان ویژگیهای دیریافت...
متن کاملپیش بینی عملکرد پسته با استفاده از رگرسیون چندمتغیره ی خطی و شبکه عصبی مصنوعی (مطالعه موردی: شهرستان های رفسنجان و انار استان کرمان)
امروزه، مدیریت اصولی اراضی بهعنوان یک راهکار مهم برای رسیدن به عملکرد بیشتر در واحد سطح و استفاده بهینه از منابع خاک و آب، مورد توجه پژوهشگران، تولیدکنندگان و سیاستگذاران عرصه کشاورزی قرار گرفته است. پژوهش حاضر با هدف بررسی ارتباط بین عملکرد پسته و عوامل مؤثر بر آن، صورت پذیرفت. بدین منظور، 129 قطعه باغ در مناطق مختلف شهرستآنهای رفسنجان و انار شناسایی و انتخاب گردید. نمونهبرداری از آب آبیار...
متن کاملمقایسه عملکرد شبکه عصبی و رگرسیون چند متغیره در تخمین قیمت مسکن (مطالعه موردی: شهر اهواز)
مسکن همواره نیازی اساسی در جامعه تلقی میگردد. بازار مسکن طی سالهای گذشته یکی از پرنوسان-ترین بخشهای اقتصاد کشور ایران بوده است. از آنجایی که نغییرات بخش مسکن تاثیر فراوانی بر سایر بخشهای اقتصاد دارد بنابراین یکی از نیازهای قابل توجه در امر مسکن، پیشبینی دقیق قیمت این کالا می-باشد. در این راستا در پژوهش حاضر با استفاده از شبکه عصبی مصنوعی پرسپترون چند لایه، مدلی برای پیشبینی قیمت مسکن در ش...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
نوع سند: پایان نامه
وزارت علوم، تحقیقات و فناوری - دانشگاه علوم کشاورزی و منابع طبیعی ساری - دانشکده علوم کشاورزی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023